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Abstract: In the present work, an alternative multi-layer unsupervised neural
network model that may approximate certain neurophysiological features of Natural
Neural Systems has been studied, The Network is formed by rwo parts. The first
part of the network plays a role as a Short Term Memory that is a temporary storage -
for each pattern. The task for this part of the network is to preprocess incoming
patterns without memorizing, in other words, to reduce the dimensions and the lin-
ear dependency among patterns by determining their relevant representations. This
preprocessing ability is obtained by a dynamic lateral inhibition mechanism on the
hidden layer. These representations are the input patterns for the next part of the
network. The second part of the network may be accepted as a Long Term Memory
which classifies and memorizes incoming pattern informations that come from hidden

layer.

1 Architecture of the Network and Training pro-
cess
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Fig. 1: Architecture of multi layer network.
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64 input units, a hidden layer with 64 hidden units and an output layer with 64
units. The layers are fully interconnected to the next layer. The output and hidden
layers have internal lateral inhibitions. The first part that is between input units and
hidden layer accepts input patterns one at a time (Fig 2.) In other words. when we
present the first pattern to this part, only this part of the network will be trained
until we obtain internal representations in the hidden unit for this pattern.
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Fig. 2: Training process.

Before we can present the second pattern this part of the network will be initialized.
After we have obtained an internal representation for the first pattern in the hidden
layer, this representation presented to the second part of the network as an input
for final classification of the pattern. There are two possible preprocessing in the
first layer. We can train the network until we obtain internal representations of the
input patterns. In this type of training, it is possible that patterns can have common
elements. In the second type of trining, we can train the network by eliminating com-
mon activated units until we obtain unique representations for each input patterns.
In this second method patterns will be reduced into their orthogonal representations.

The second part of the network can be considered as another single layer network
between the hidden layer and output layer. The function of this second network
differs from the first part of the network in terms of the way of training. This part
accepts the internal representation as input and the layer is trained untill the pattern
is classified. The next internal representation, which is the result of the second pattern
that is presented in the first part. will also be accepted as second input pattern to
the second part of the network without any initialization. In this way, the second
part of the network is capable of training and memorizing a sequence of patterns as
in traditional training.

A “neighbour inhibition” method with an Eight-directional Inhibition Strategy
(Fig. 3) is used in the layer of the first part of the network that is in fact the hidden
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layer for the whole network. In this strategy most active unit inhibits the activity of
its closest neighbour units. Units in the layer organized in a two dimensional array.
In the output layer of the network, the “Winner-take-all" method is used.
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Fig. 3: a) Neighbour neuron inhibition with Eight-directional Inhibition Strat-
egy. Most active unit inhibits the activity of its closest neighbour units. b)
Winner-take-all Inhibition Strategy. Winner unit pushes other neurons into a
constant minimum value.

2 Learning algorithm of the Network

There is a large number of fibers that provide synaptic connection to a given Purkinje
cell (Fig. 4) in a Natural Neural Network®. We denote the number of all parallel fibers
by N. The input carried by the k*® parallel fiber at the time ¢ is denoted by sx(t):
it can have the value of 1 or 0 according to whether the fiber carries an impulse or
not. The effect of the input from the k*" fiber on the i*" Purkinje cell is determined
by the synaptic coupling strength Wé').

Fig. 4: Symbolic notations for two Purkinje cells.
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The output of the network is carried by the axons of the M Purkinje cells and acts to
inhibit muscle activity. The strength of the effective inhibition of a cell denoted by
g. This activity of the ¢*" Purkinje cell is characterized by the quantity a()(t), which
is 1 or 0 depending on whether the cell it originates at is active (i.e. has fired) or
n?]t. The activity state of the Purkinje cell in turn depends on its axon hill potential,
vl(t).

2.1 Neuronic equation (Netinput)

To describe the behaviour of a neuron, I will employ a formulation based on ref. 3.
The dynamic behaviour of a neuron is governed by the neuronic equation:

' N Mo :
vt 4 7) = [(1 = o) + 3T W(t)se(t) ~ Zg§')a(~’)(t)](1 ~a), ()
k=1 1=1

where

@ v0(t 4 7) :Hill potential at time (¢ + ) of cell i. (In natural systems this time is
7 & 1 msec.)

# (1~ A)o®(2) :The remaining potential of neuron i from time ¢ at time (t+ 7).
If no other input arrives from fibers then the potential of the neuron decreases
exponentially with A decay constant (A = 0.1 in my appl.)

o W,f"(t).s“t) :The excitation arriving from the '" parallel fiber to neuron 7 at time
t.

) g}i}a(j)(t) :The inhibition arriving from other neurons to neuron i at time ¢.

o (1~ al)(t)) :A multiplicative factor. This term resets the potential to its resting
value after the firing and keeps it there the refractory period (the minimum time
between two firing), during which the the neuron is not excitable.

A neuron will become active, if its potential v(") at the axon hill exceeds a threshold
value, 0, (@ == 1 in my appl.). In that case the neuron will emit a non-decreasing
pulse of fixed duration 7, along its axon making inhibitory action at all of its synaptic
connections.

This activity is described as,

29(t) = { Lif v(t) 2 60
0, otherwise
Given the time-dependent input si(t), the response of the network can be calcu-
lated with eq. (1). For a shorter period, the synaptic strengths W,S') and gJ(” can
be considered as constants. If the incoming pattern remains steady for several time
steps; those Purkinje cells whose synaptic strength vectors have the best overlap with
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the input pattern vector will be most likely to fire; in turn, they will then inhibit their
neighbouring neurons as a consequence of the lateral inhibition ¢\ 1f the membrane
potential, v, of a neuron exceeds a given threshold value, 9, then neuron becomes ac-
tive (fired) and inhibits its neighbours with a certain inhibition value. Active neuron
also resets itself into resting membrane potential value,

2.2 Memory equation (Learning)

On a longer time scale the coupling strengths may change, thus providing a learning
ability for the net. When we assume that the inhibitory synapses are fixed, the
excitatory synapses leading from the parallel fibers to the Purkinje cells may change
according to Hebb’s rule®, which we formulate in the following memory equation:

Wit +7) = g0 (1 = W) + 8 (Bsn(t - )] @)

where

o W{(t+7) :Synaptic strength of coupling between fiber & and neuron i at the time
(t+ ).

o g :Normalization constant for neuron 2.
o (1~ e)W,f")(t) :Exponential decay of synaptic strength (¢ = 0.001 in my appl.)

s 6al)(t)s(t — 7) :If neuron i active at time ¢ (i.e., a= 1), the connections between
neuron 7 and fiber k will be strengthened by & learning rate.

The normalization condition

N , .
g = 4@/ [(1 — )Wi(t) + 8O (t)s(t — r)]) (3)
k=1

where 7 is a constant (i.e., 7(*) = 1), This condition ensures that the total synaptic
strength remains constant,

N
> Wiy =n".
k=1
This learning mechanism simply describes the effect that if an excitatory impulse

is arriving to a synaptic coupling which will lead in the. following time step to a
firing of the post-synaptic cell, then that connection will be strengthened by . Due
to the normalization 7@ , and the slow exponential decay of the couplings, all “non-
successful” synapses will be somewhat weakened at the same time. Exponential decay
(1~ 1) in neuronic equation and (1 —¢) in memory equation are ignored in the second
layer of the network to obtain plausible classification of patterns.

Learning algorithm for the second layer of network is as follows
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neuronic equation.

: N Mo .
ot 1) = [o0t) + 3= W B (1) - o] -an).
k=1 J=1
and memory equation,
Wit +7) = ¢ [Wé"’m + 8a)(t)si(t - r)] : (5)

3 Features of the network

The learning algorithm and architecture of the network explained above are different
from other network models. The advantages of the two layer model presented above
are;

Ability of preprocessing the incoming pattern.

The network has ability to preprocess the incoming patterns and reduce the di-
mensions and the linear dependency among these patterns then memorize them. Ex-
periments indicate that the network has ability to classify all input vectors as long
as those vectors have less than 40% common elements with each other. When the
patterns A, B, C, 1 and 2 presented to the network (Fig. 5), patterns C and 2
have been classified into same class.
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Fig. 5: Input patterns A, B, C, 1, 2, their Internal representations and
response of the network in output layer.

The reason is that common elements of these two patterns are more than 40% of
the number of representation elements. Patterns A and C had 4 common elements
but they have been classified into their own classes since their uncommon elements
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were in majority. The second layer of the network is limited with properties of
“‘winner~takes-all’’ method!®.

Network architecture and learning algorithm are similar to biological mechanisms.
The learning algorithm is based on neurophysiological activity of real neurons. If

the membrane potential, v, of a neuron at a given time exceeds a certain threshold

value, 0, then the neuron becomes active (fired) and inhibits its neighbours with a

certain inhibition value. Only the weights of the active neuron are adjusted. Active

neuron also resets itself into resting membrane potential value.,

Network accepts repeated patterns.
Repeated patterns during training do not cause any side effect. They activate

always the same output units.

Network has ability to learn a new pattern without training the whole set again.
Network trains with one at a time process. It makes possible to add a new pattern

to the network in any given time.

Values of parameters are fixed.

Choice of parameter values for learning and the number of training iterations are
fixed. The network may be trained with a value of learning rate 0.1, and 150 cycle for
each pattern for each layer. These values are valid for any type of pattern. Inhibition
values between the units are set to 0.9 when the method is neighbour inhibition.

Conclusion

In the present work, an alternative unsupervised neural network model that may
approximate certain neurophysiological features of Natural Neural Systems has been
studied. This work is a result of further investigations on ref. 3 and 4. However the
present model shows us the ability of character recognition, It can also be investigated
within the subject of signal processing. This model can work as a feature detector
or signal classifier in many application areas like speech recognition, active sonar

classification, etc.
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