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Abstract

Robotic manipulator control with unkrown or uncertain dynamics has been an important
research topic in the last decade. Without a parametric model of robot dynamics, learning
control techniques are still the most effective methods for repeated trajectory following tasks.
In this class of controllers, neurologically inspired algorithms have been gaining much attention
in recent years. Although these techniques were shown to work effectively in simulation
experiments, coupled and nonlinear nature of parameter update dynamics makes an effective
matheinatical analysis difficult. This paper investigates the convergence properties of an
artificial neural network based learning controller. The results obtained reflect the local
stability properties of the ¢losed loop nonlinear system dynamics.

1. Introduction

In recent years, Artificial Neural Networks (ANN) have emerged as a viable alternative for
various engineering problems of nonlinear nature, Within this new trend, many researchers
have attempted to apply neurologically inspired algorithms for manipulator control. The main
underlying assumption in these applications is the efficient capability of multi-layer ANNs to
approximate multivariable functions. With the increasing interest in this area, IEEE Control
Systems Magazine had come up with three issues which covered special sections on neural
networks for control systems [1]. The interested researcher can find an exhaustive list of the
previous work on the subject in [2].

The present paper discusses the stability properties of an ANN based trajectory following
controller. The controller algorithm in question was originally proposed by the author in [3,
2] and successfully tested for trajectory following tasks through simulation experiments. The
controller is basically similar to the adaptive inverse dynamics control algorithm of Craig et al.
[4].

However instead of using an explicit parametric model, the controller utilizes generic multi-
layer ANNs to adaptively approximate the manipulator dynamics over a specified region of the
state space for a given desired trajectory. This generic neural network structure can be viewed
as a nonlinear extension of a deterministic auto-regressive model which is commonly used in
model matching problems for linear systems.

2. Controller Architecture

In this section we introduce the controller structure and then write the closed loop system
~dynamics for the proposed ANN based controller.

*This work was in part sponsored by Westingliouse Education Foundation under contract No:3597262,
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Consider the vector representation of an » link rigid manipulator dynamics, given as

= M(q)q + v(q,q) + g(q) (1)

where 7 is the nx 1 vector of joint torques, and q is the nx 1 vector of joint positions. The matrix
M (q) is the n X n positive definite “inertia matrix”. v(q,q) is n X 1 vector function representing
centrifugal and Coriolis effects, and finally n x 1 vector function g(q) represents torques dus to

gravity. The derivation of (1) can be found in common reference texts [5]. Equation (1) can be
put in a more compact form as R

7= M(q)q + h(q,q) (2)

The control designer’s task is to devise a controller such that the manipulator tracks a given
desired trajectory (44, 44 61q) as closely as possible.
If exact manipulator dynamics is available, then the control

T = M(q)(Kyé + Kye + dq) + h(q, q) (3)
will result in an error equation of the form,
é+ Ko+ Kpe=0 (4)

due to the cancellation of nonlinear terms, where e = q4-q and é = g4 ~ §. K, and K, are the
diagonal matrices of velocity and position servo feedback gains, respectively. Note that the above
error equation is a decoupled one due to the diagonal nature of the constant matrices K. » and
Ky, Therefore adjusting these gain matrices properly, tracking errors can be effectively forced
to zero. If the dynamic model of the manipulator is not available to the designer, generally
learning control techniques are used to generate the necessary feedforward torques.

Here we propose the use of a generic ANN to model the inverse dynamic structure of each
joint, For an n-link manipulator, inverse system dynamics given in (2) can be defined by a
nonlinear transformation

R-1;R3n _, Rn (5)
which maps the 37 dimensional output space of the system (position, velocity and acceleration
vectors) to the n-dimensional input space (joint torque vector 7). Such a nonlinear transforma-

tion can be effectively modeled by ANNs as discussed by Funahashi [6], Cybenko [7] and Hornik,
Stinchcombe and White (8],

Mathematical Setup:

Inverse dynamics which is represented by the nonlinear transformation B-! in (5), can be
decomposed into n transformations for each joint, namely

T o= R(q,q,§) (6)
i (q,4,4)

= : (7)
Ne,4,d)

where each r7Y(q,q,q), i = 1,...,n defines the inverse dynamics of the corresponding joint,
that is,

r;'l(q,(‘l, q): R - R, withi=1,...,n

Each entry »77(-) of the vector function B—1 can be modeled by a multilayer ANN such that
the overall system’s inverse dynamics model is represented by,

A ) | M)
7= R"Y(q,4q, q) = : :

—
=

(8)

_ f;l(;(z)) | Nn(é, Pn)
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where (-) denotes the estimated models, and Ni(*), ¢ = 1,...,n represents the output of each
ANN model that is used to realize the nonlinear mapping r;*(-). z(t) is an augmented state
vector of the robot dynamics,

[2(t) = (a” (1), 4" (2),&"(1))" € R*"

which denotes the time dependent input vector of the inverse dynamics and p; is the vector of

all adjustable weights of the ith ANN model.

Here we assume that a three-layer ANN with “k” inputs, “m” hidden layer units and one
output unit is used to model a joint’s inverse dynamics. Then this model can be explicitly
written as,
#(@(1)) = Ni(a(t), wilt), Hi(t)) = wi Y (Hiz) (9)
where w;(t) € R™ is the adaptive output layer weight (parameter) vector, Hi(t) € R™*F ig
the hidden layer adaptive weight matrix of the “i"th ANN model. 2(2) € R* with k = 3n is
the input vector as defined before. In the rest of the text, time argument of these vectors will
sometimes be dropped for notational simplicity. The vector function T(-) € R™ is defined as,

T(') = (gl(')'l wee )gm('))T

where gi(-) € R is by definition a monotone increasing function which is taken as a sigmoid
function in this case, based on the justification given by the theorems in (6, 8). Hence gi(z) =
fri'lé"_‘T and it is bounded as 0 < g;(2) < 1.

We next define a vector v; = vec(H;) € R™k which represents the hidden layer adaptive
weight matrix H; of the ANN model in vectoral form. vec(-) operator gives a vector which is
obtained by stacking the columns of its matrix argument. Based on this new parameter vector,
the argument of vector function T(-) can be written as

Hiz = dv; (10)
where
Vi = {HﬁnHizn' oy Hiys "-aHl'un' . -aHimk}T

and ® € R™X™* ig a matrix which can be considered as the modified input of the ANN model
and is defined as,

z 0 ... 0 ... % 0 ... O
0 »n ... 0 ... 0 2z ... 0

&= . l oo : :L oo (11)
0 0 ... 21 ...... 0 0 ... 2z

where 2, € R, i =1,...,k are the elements of the input vector z € R*. Hence (9) can now be

written as,
#7Y(my Wiy vi) = Ni(z, Wi, vi) = wi Y (®v;) (12)

Next we define a control law which consists of an adaptive feedforward compensator and a
feedback signal as,

7= RY(2) + &+ K& + e = N(z) + &+ Kyé + Kpe (13)

where K, € R™*" and K, € R"*" are the diagonal gain matrices with entries k, and &y,

respectively. )
R™(z) = N(z) = {Ny,...,N,}Y e R"

is the robot's dynamic model estimate which consists of “n” individual ANN models, each
representing one joint’s inverse dynamics.
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3. Closed Loop System Dynamics

In this section we generate the closed loop system’s dynamic equations and demonstrate the
difficulty of a global stability analysis. With the control vector given in (13), system’s error
dynamics can be written by substituting (13) in (2),

R (a)+8+ Ket e = M(2)d+h(a,d) (1)
R—‘{(z)
é+ K6+ Kye = R(z) (15)

where R~1(2z) = R~1(q,q,§) € R™ denotes the error between the actual inverse dynamics R~1
and the estimated model £, and can be explicitly written as,

B | ’Tl(za P1) 4 ,
RY(z) = (16)
Fat(a, Pn) .

where
7z pi) = 174z) = Ni(2z, p1) = r{ 1 (a) ~ 771 (=)

denotes the error in inverse dynamic modeling for each joint, and p; = {w7,vI}T € Rm+mk ig
the adaptive weight vector of the corresponding (“i"th) ANN model.

Using (15) and (16) the error dynamics (with diagonal X, and K, matrices) for each joint
can be written as follows,

€ + kyé; + kpe; = F,-"l(z,p;), fori=1,...,n. (17)

where ¢;, é; and é; denote the position, velocity and acceleration errors at joint 1, respectively,
kp and k, are the individual servo gains, respectively. Based on the existence theorems given in
[6, 8], we can assume that there exists a three layer ANN structure (which is defined in ( 12))
that closely approximates the joint’s inverse dynamics. That is,

ri} () = wiT(@vio) (18)

where wy and vig represent the desired output layer and hidden layer weights that generate the
desired mapping, r;*. In the rest of the analysis the subscript “i”is dropped for the brevity of
the presentation. Using the desired mapping given in (18), the error in the approximation of
the inverse dynamics of a joint can be written as,

#(z,p) = yvg'T(Qvo)J~yTT(<I>v)l (19)

=1 F-1

Using this residual dynamic representation, we can analyze the error equation given in (17)
which in fact represents a stable linear system with a nonlinear forcing function. Then the error
dynamics in (17) can be written as,

e(t) = H(s)i'(z,p) (20)

where H(s) is a strictly positive real (SPR) transfer function, due to the positive gain terms
kp and ky in (17). Based on this error dynamic model, to update the parameter estimates p, a
simple gradient update algorithm can be written as,

z~1
p i (2,

b= -T BBy (21)
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where T ¢ R(m+mk)x(m+mk) jg 5 diagonal gain matrix which includes the learning rates as its
diagonal entries. The'state space representation of (17) is given by,

x Ax + B#Y(z,p) (22)
e = ex (23)

fl

where x = (e,&)T € R?*? is the state vector, and A, B and and ¢ denote the minimal state space
representation due to strictly positive real H(s). Since H(s) is an SPR transfer function, based
on the Kalman-Yakubovich lemma [9], for a given symmetric positive definite (p.d.) matrix @,
there exists another symmetric positive definite matrix P which satisfies the Lyapunov equation,

ATP 4+ PA=~Q (24)

and the output relation,
c=BTP (25)

Replacing the output vector ¢ in (21) by (25), the gradient update law take sthe form,

_ ai—1£2® T
= -1 P Px (26)

it

7
p [\a N(z,p) BT Px (27
op

where N(z,p) is the output the ANN model. Due to the nonlinear parametric dependence of
the term N(z,p), the computation of the partial derivative term in (27) requires the so-called
backpropagation algorithm. Note that the closed loop adaptive system represented by (22)
and (27) defines a coupled nonlinear system of differential equations and this makes a global
convergence and stability analysis of the closed loop system difficult, However local properties
of the system dynamics can be studied through the use of linearization techniques. Linearization
dictates that, subject to smoothness of the nonlinear oprators in (22) and (27), one can constitute
a linearized system whose stability properties are identical to the local stability properties of
(22) and (27).

4, Stability and Convergence Analysis

In order investigate the local stability and convergence properties of the closed loop system,
the system dynamics is linearized around the desired system state. Let p, and x. denote the
desired values of the parameter vector p and the state vector x, respectively. That is x. = 0
and p. = (wl,v{)T. This basically corresponds to a condition where the system operates in
the vicinity of the desired trajectories (qq, ¢4, 4¢), and the ANN model parameters are close to
their desired values. With this choice of the nominal signals, the perturbation vectors become,

X=Xe~X= =X
which is actually the tracking error vector and
P=p.—P

which is the parameter error vector. With this set up, we first linearize (22) around x, = 0 and
p. as follows,

. T T
k= 2(543‘). %—B .é_’_(.l"’._g_@l'l)_) W - B 19("";(@")) E (28)
* x w ZeyWo, Ve v Zo W Ve

325



where z, = (qa”, 447, §47) basically corresponds to the desired (nominal) state x, = 0. Evalu-
ating the partials, we get

% = Ax 4 BYT(®,v.)W + Bwl J,8,v (29)
where J, € R™*™ is a diagonal Jacobian matrix evaluated at the nominal values,
9ilzeve 0 X 0
T I (30)
0 0 e Gl

and @, is the vector function (defined in (11)) which is evaluated at z,. Combining ¥ and W as
the parameter error vector,
p= (ﬁ,T,{,T)T ¢ R(m4mk)

equation (29) can be written as
X = AxX + BV, (Z,, Wy, Vi )P (31)

where

U, = (YT (2,v.),w! J,8,) € RIX(m+mk) (32)
can be considered as the linearized regressor vector of the error dynamics, and Using the same
arguments and linearizing (27) explicitly for w and v, we get,
I'yY(®.v,)BT Pk (33)
= 1,07 J,w,BT Px (34)

< st'
t

where ®, and J, are as defined previously and Iy € R™¥*mk and T, € R¥** are diagonal
matrices which are in fact the partitions of the gain matzix I'. Combining equations (33) and
(34), linearized update equation for the parameter vector P can be written as follows

p=-TUTBTPx, since % = —x (35)
where ¥, is as defined in (32). Equations the (31) and (35) constitute the linearized closed loop

system dynamics, Based on this linearized model we can now state the following theorem [10].

Theorem 1:

Given the linearized system dynamics in (81) and the update law in (35), the tracking error
vector X satisfies,

x—0ast— o0

with all signals remaining bounded.

The proof of the theorem is given in (10]. The above result ensures the convergence of the
tracking error vector x in the vicinity of a nominal solution. However note that the above
theorem does not guarantee the convergence of the parameter error vector p, although it shows
its boundedness.

5. Convergence of Weight Estimates

In order to investigate the convergence properties of the parameter error vector p, let’s write
the linearized closed system dynamics using (31) and (35),

HEESIH e
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Equations similar to (36) arise in most adaptive control applications, and its asymptotic stability
has been studied by several researchers [11, 12, 4]. Note that equation (36) defines a linear time-
varying system and its asymptotic stability determines the convergence of the parameter error
vector p. The system given in (36) is asymptotically stable, if the transfer function

BTP(sI - A)™'B (87)
is strictly positive real and if there exists positive constants f, 7 and T" such that
tg+T
Bl / W, dt vyl (38)
to

holds for all ¢ with [ € R(mtmk)x{m+mk) heing the identity matrix [11]. The sign > defines the
positive semi-definite ordering of the matrices. The transfer function defined in (37) is strictly
positive real for the above case as discussed in Section 4. Therefore if condition (38) is satisfied,
then P converges asymptotically. Equation (38) which is usually referred to as the persistent
excitation (p.e.) condition, states that ¥, must vary sufficiently over the interval 7" such that
the entire (m -+ mk) dimensional space (i.e. the parameter space of the ANN model) is spanned
to ensure the convergence of p.

In equation (38), ¥, is bounded as seen from (32). Then, left hand inequality holds directly
and the p.e. condition can be written as,

to4+T T
/ Ul dt - I (39)
fo

The outer product matrix in the integral equation given in (39) can be explicitly written as a
partitioned matrix as,

(40)

T ®uv,)TT(Buve) | 'r(q»,v.)wz"J.@,)

vly, = ( B
3T JTw, YT (duv.) | @TITw.wlJ.®,

Note that the above matrix is related to the desired trajectory vector z, = (qqT,dqa”,qa” )7
through ®, and J,, with z, acting as their arguments. Due to the nonlinear nature of the above
matrix integral equation, it is rather difficult and impractical to generate persistently exciting
trajectories from that equation. One method to utilize the condition given in (39) is to generate
desired trajectories based on our engineering knowledge and then to test their p.e. condition.
We are currently studying the structure of (39) in order to derive more explicit p.e. conditions on
Z.. In general, generation of persistently exciting trajectories is an important research topic [11].
Next we present some simulation results and demonstrate the error and parameter convergence
properties of the proposed controller architecture.

6. Simulation Results

The architecture proposed in Section 2 was tested on a two link manipulator model using sim-
ulation methods [2]. As a test for the adaptation properties of the controller, the end effector
mass is changed while the manipulator is closely following a prescribed trajectory. For this test,
the second link mass is changed from its nominal value of 8 kgs. to 16 kgs. at the “2" second
mark. The position error profiles due to this sudden change in manipulator dynamics are shown
in Figure (1). As shown in the figure, the controller effectively reduces the sudden jumps in
the position errors and brings the errors down approximately to their previous levels in about
1-1.5 seconds. In order to demonstrate the changes in the manipulator’s inverse dynamics due
to the end effector mass change and the ANN model’s ability to track these changes, the torque
profiles are monitored during the adaptation test (Figure (2)).

Desired torque profiles corresponding to this change and the torque profiles generated by the
ANN models of each joint are plotted in Figure (2). The observed torque profiles converge to
their desired levels by the end of the trajectory. More simulation results are given in [2],
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Figure 1: Position errors for the adaptation experiment. End effector mass is changed from 8
kgs. to 16 kgs.
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Figure 2: Desired and observed torque profiles when the end effector mass is changed from its
nominal value of 8 kgs. to 16 kgs.
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7. Conclusions

Neurologically inspired robotic controllers have been receiving much attention in recent years
due to their effective learning capabilities. There are many reports on successful simulation
results, however there is not yet a well defined mathematical analysis for their stability and
convergence. This is due to the nonlinear nature of parameter update dynamics which makes
use of the well known backpropagation algorithm. This paper investigates the local stability
and convergence properties of an ANN based robotic controller which was previously proposed
by the author. Simulation experiments demonstrate the convergence properties of the controller
architecture.
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