A NEURAL NETWORK ARCHITECTURE FOR EMULATING
FORWARD DYNAMICS OF A ROBOT MANIPULATOR

Turhan Tunal 1 Mehmet Kuntalp 2 Bahadir Samix 1

1 Dept. of Computer Engineering, Ege University, Bornova, lzmir 35100, Turkiye

2 Dept. of Electronic and Communication Engineering, Dokuz Eyltil University, Bornova, Izmir

35100, Turkiye

Abstract

A neural network architecture for emulating forward dynamics of a simulated
three degree of freedom revolute joint robot manipulator among a predefined trajectory is
developed. The performance is investigated and results are reported. The potential use of

the emulator for robust control purposes is discussed.
1. INTRODUCTION

It is well known that the technique of error backpropagation attracted many
researchers and incereased the popularity of artificial neural networks, As in most other
neural network studies, application of neural networks to control systems involves the
use of error backpropagation technique [1,2,3]. In these methods, a feedforward neural
network is trained to behave like the plant which is to be conirolled. Afterwords, the
neurocontroller is trained. In other words, the feedforward neural network acts as an
"emulator" and it learns to identify the dynamical characteristics of the plant. The
training of the emulator is analogous to "plant identification” in control theory however
there are two basic advantages, Firstly, there is no need to provide any information about
the model. That is, emulation is done automatically. Secondly, the neural emulator is

able to model the nonlinear plants including robot manipulators,

The importance of providing a good emulator for neurocontroller architectures lies
under the fact that the neurocontroller cannot be trained by using error backpropagation
algorithm without an emulator. The output values that can be measured are the ones of
the plant, not of the neurocontroller and the error signal at the output can not
propagate backward through the plant which is not a neural network; so the
backpropagation algorithm in which the error must propagate backward from the output

to the input can not be used. To overcome this problem, the emulator is used in place of
plant during the training of neurocontroller.

In this study, a neural network architecture for emulating forward dynamics of a
simulated three degree of freedom revolute joint robot mantpulator among a predefined
trajectory is developed. In the next section, the simulated forward dynamics of the robot
arm used in training of the emulator will be given and the trajectory used will be
specified. In the third section, details about the training process and the architecture will
be discussed. Finally in the last section simulation results about the performance of the

emulator will be given and the ability of the developed emulator in operating on different
trajectories will be discussed.

2. ROBOT ARM FORWARD DYNAMICS SIMULATION

Using Lagrange-Euler formulation the dynamnics of a robot arm can be written as

A@O+HO) +G(O)=1 (1)

where @eR™ is the joint angle vector, ©eRR is the joint angular velocity vector, ©eRD ig
the joint angular acceleration vector, n is the number of joints, 1 R? is the motor torque
vector. A(@)e R™ x R is the generalized inertia matrix, H(®, 8)e RN is the nonlinear term
containing corfolis and centipital factors, G(®) is the term containing gravity factors [4].
The link structures used in this study are circular cylindrical shell, conical shell and a
uniform slender rod as given in [4] for a Microbot arm. The values of parameters used are
mi= 3kgymo= 2kg , ma= 1 kg where my is the ith joint mass, h=20cm e=30cm f= 30

cm where, h, e, f are joint lengths respectively, r= 5 cm is the link radius. ® and & are the
outputs and 1 is the input and n=3.

We have used

x(t) = a + bt + ct? + qi3 2

to generate desired trajectory in base coordinates which Involves going from one point to

another in 2.5 sec. The initial and final points are assumed to be 80 ¢m apart from each

other. The inverse kinematics package written for the robot generates @4lt), éd(t) and
?:)'d(t) which realizes (2) every 10 msec which is the sampling period T. The robot is
assumed to be at rest at the inittal and final configurations.

316

We have used computed torque technique [5] to generate the torque values which
make robot track the desired trajectory. The robot is assumed to be on the desired
trajectory initially. The cutput data @(t) and @(t) is generated by using Runge-Kutta
integration procedure of fourth order. As a result we have generated data for 250
sampling intervals which contain @(KT), O(kT), =(KT),

3. EMULATOR ARCHITECTURE AND TRAINING SCHEMIE

The neural network is chosen to be a feedforward one which consists of an input
layer, two hidden layers and an output layer, The number of processing elements in the
output layer is chosen to be six which is equal to the number of outputs of the robot
arm. The input layer has nine elements among which three are the input torques and six
are the initial states. Figure 1 depicts the Inputs and outputs of the neural emulator. In
the first hidden layer

B

Delay
10 msec

b > S—

Figure 1. The Inputs and Qutputs of the Neural Emiulator
27 processing clements are used. The number of processing elements in the second
hidden layer {s chosen as that of the output layer, namely six. Thus, as a total, emulator

network contains 48 processing elements and 441 connections among them.

Error backpropagation algorithm is used to train the emulator, Figure 2 depicts
the training scheme of the emulator.

317

‘t B S ———

=il

ST Robot Simulator

B B s 1 " e ool

- ‘[Delay 10 msec

e

s&

S —

Emulator IR

Figure 2: Training Scheme

()

~¢

s s s

The environment used is Neural Works Professional Il on a PC, The scale factors are
chosen to be 0.25, 1.00, 1.00 and 2.50 respectively. All of the transfer functions are

chosen to be hyperbolic tangent except the ones used in the input layer for which linear
transfer functions are used,

The order of the data generated in section 2 which contains 250 sampling interval
input and outputs is randomized to prevent network from diverging., The initial
connection weights are also randornized between -0.1 and +0.1 due to same reason, To
improve the convergence in training process, the values of the learning coefficients are
decreased several times during training. Table 3 shows this variation,

Table 3:; Change in Learning Coefficients

318

K\\«_» Training up to] I

Lear E‘“‘“\-\

coeflicient ... | 10000 | 15000 | 20000 | 30000 |40000 | 50000 60000 | 70000

B .1]0:900| 0750 | 0.600 | 0.300 | 0.225 | 0.150 | 0.135 | 0.105

o 2 | 0.600 | 0.500 | 0.400 | 0.200 | 0.150 | 0.100 | 0.090 0.070
3] 0.000| 0.000 | 0.000 | 0.000 0.000J 0.000 | 0.000 | 0.000

4. PERFORMARNCE OF THE EMULATOR AND DISCUSSION

To measure the performance of the emulator, a program is written in C language
to evaluate the errors at the outputs. After training the network 70000 times, it has been
observed that the rms positional error is reduced to 0.23 radians approximately. It has
also been observed that if the robot is initially on desired trajectory and computed torque
method 1s used on simulated dynamics alone, comparable rms error occurs even if T is
decreased. This indicates that the rms error measured at the output of the emulator is
mainly because of numerical errors of PC environment. Table 4 indicates the mean, rms

and absolute extremum error§ of joint positions and velocities of the emulator.

.| meanerror | 1ms error absolute extremum error
81 | 00023 | o024 | 00875 |
B2 | ooos9 | o027 | 00840
63 | 00027 | 00162 | 00267
8, 0.0011 0.0316 0.0866 B
o, | -0.0072 00241 - 0.0532 '
- 0g 0.0089 00174 | 00406

Tablo 4: Mean, rms and absolute extremum errors (in radians and radian/sec)

The next step was to determine how succesfully the network emulates the
manipulator on trajectories which are not thaught. In other words, how succesfully the
emulator generalizes? The emulator Is tested as follows: The trajectory for which the
emulator was trained is taken as a reference. Then to determine the generalization range,
various trajectories which are x cm apart from the reference trajectory were created and
network is tested with these new trajectories, Namely, torque values which correspond to
these trajectories are given as input and the outputs of the simulated robot and emulator
are compared and rms errors are examined. Then x is increased and the measurements

are repeated.

We have concluded that emulator performance decreases when x>1.5 em. In other
words, emulator has learned the trajectories which are within 1.5 cm of the original one.
This is good enough to use the emulator for robust control purposes in which the

magnitude of error never reaches to these values. Tables 5 indicates the mean, rms and

319

absolute extremum errors measured for trajectories which are 1.5 apart from the original
one,

e MICAND ETIOY | rms error | absolute extremum error
1 | o010 | o057 0300
%2 0072 | 0036 | om0
% 0098 | 0046 oy
61 0.002 0073 | . 01w8 |
8, | -0.006 0082 | 0184
b 0.029 0.087 0.215

Table 5: Mean, rms and absolute exiremum errors {in radians and radian/sec)
for trajectories 1.5 apart from the original one.

REFERENCES :

{11 Psaltls, D., Sideris, A. and Yamamura A. (1988). "A Multilayered Neural Network
Controller" IEEE Control Systems Magazine, April,

[2] Kawato, M., Ono, Y., Isobe, M. and Suzuki, R, (1987). "Hierarchical Neural Network
Mode for Voluntary Movement with Application to Robotics” Proceedings of the
IEEE International Conference on Neural Networks.,

{31 Gues, A., Eilbert, J.L. and Kam, M. (1987). "Neural Network Architecture for
Control" Proceedings of the IEEE International Conference on Neural Network.

[41 Wolowich, W A, (1987). ‘Robotics: Basic Analysis and Design". Holt, Rinehart and

Winston 1987.

[5] Lee, C.S.G., Mudge, T.N. and Turney, J.L. (1982). "A Hierarchical Control Structure
Using Special Purpose Processors For the Control of Robot Arms" Proc. of the
Pattern Recognition and Image Proccessing Conference,

320

