Classification and Computation on Non-uniform Finite

Cellular Automata Networks .
Hiirevren KILIC? and Marifi GULER?

. 1 Bilkent Computer Center, Bilkent University; Bilkent, 06533 Ankara, Tiirkiye.

B De&sartment of Computer Engineering, Middle East Technical University,
06531 Ankara, Tiirkiye

. Abstract o
. In this paper, a model called Non-uniform Finite Cellular Automata (CA) Network is
introduced, and its classification and computation power studied. The suggested model
is similar to the original Cellular Automata Network model, with its local neighborhood
property, but neighborhood definitions of cells are not the same (non-uniform) for each
cell and deterinined by an algorithm. The model is similar to‘the Neural Network (NN)
model with its different local cell (neuron) transition function definitions and with its
training (or feature extraction) mode; Dgpending on"the nature of input-output tem-
plates, computation can be done on the system. Necessary and sufficient conditions for
doing computation on this model are based on the work of Tchuente, and will be elabo-

rated upon in this paper.
1. INTRODUCTION

An Automata Network may be defined as a locally connected large set of ‘cells (fi-
nite automata), which can evolve at discrete .time steps through mutual interactions: In
this model, space, time and cells are discrete. Automata networks have many applica-
tion areas such as, ‘Artificial Intelligence, Pattern Recognition and Learning Systems,

A particular class of Automata Networks is the Cellular Automata (CA) Networks.
In computer science cellular automata is used to model parallel processing and Von
Neumann (self-reproducing) machines. In cellular automata, space is divided into dis-
crete small units called cells or sites. Each cell can take k different state values. At time
t, all the cells will have a specific state value. Rules local to a specific cell detérmine
what the value of that cell at time (z-+7) will be. Rules are the same for each cell. For k
number of states lper cell and » number of cells in the neighborhood of a cell, k¢ (where
z = k™) possible local transition functions for that cell exist. -

Another important class of Automata Networks, called Neural Networks , 'with
similar characteristics to CA Networks, use only threshold type functions as their neural
transition functions. Unlike cellular automata, in neural nefworks each neuron does not
have to evolve according to the same neural transition function, However, in general,
neural networks without the neighborhood concept that exists in cellular automata mod-
el, require great number of neural connections (or neural dependency) between their neu-
rons (e.g. Hopfield model, multi-layer perceptron model).

2. AUTOMATA NETWORKS

An automata network can be defined as locally interconnected set of cells, which can
evolve at discrete time steps. This evolution occurs through mutual interactions between
these locally connected cells. Formally, an automata network can be described as map-
ping F from S" into itself, where § is finite state space and n is thei number of inter-con-
nected cells. The stﬂ.‘lcture of connection is determined by F; if i h component of map-
ping F depends on j*! variable, cell i receives a connection from cell j. A state of tge
network is a vector X in S™ and dynamics on the network can be defined as:

Y = F(X) where F : mapping function X,Y e S™ are state vectors

181

At each time step, each automaton in cell i computes its next state according to the
rules of megping F;, and causes a global evolution of network. This is known as parallel
iteration. Other iteration modes such as sequential mode where cells are updated in a
prescribed order and memory mode where previous cell values are used, also exist [1].

Since the state space S is usually finite, at the end of at most k™" steps of ‘evolution,
(where k is the number different states that a cell can be in and 7 is the number of cells),
the system will enter into a cycle or a fixed point which can be accepted as a cycle of pe-
riod 1. The mapping function F defined above is deterministic, i.e., we can guess exact-
ly the next state of the system from its present state. In this paper, only the deterministic
(not random) automata networks are considered and studied, Automata networks are dis-
crete and dynamical systems in time and space and they can be represented by a graph,
where each node of the graph takes one of the states in a finite set. Moreover, the evolu-
tion of the network results from changing states of each site (or node) according to a
transition rule that takes into account only the state of its neighbors in the graph.

An important class of Automata Networks are Newral Networks. In this model, the
graph representing the network is non-oriented, i.e., direction between nodes (neurons)
1s not important and graph is finite. Nodes can take one of two state values { -1,1 ;
The transition rule is a threshold function whose inputs are the output of other threshold
units (neurons) weighted by real numbers. In general, the sign threshold function is used
to calculate the new state of a neuron. If the weighted sum of neuron values, other than
the currently calculating neuron, is positive or zero, then the next state of that neuron is
1, otherwise it is -1. Moreover, in Neural Networks there is no restriction on site up-
dating mode.

Cellular Automata Networks also constitute a particular class of Automata Networks
and were originally introduced by Von Neumann. Capabilities and limits of this model
is one of the topics of interest of this paper. In this model, the neighborhood and the
transition rules are the same for all sites (or cells). Site updating mode is synchronous,

3. THE SUGGESTED MODIFIED CELLULAR AUTOMATA MODEL

"Is it possible to construct a model similar to cellular automata and neural network
models, that has the capabilitg' of classification and computation, but with fewer number
of dependency (connections) between its cells (or neurons) ?".

The main difference between the suggested modified CA model and the original CA
model concerns neighborhood definition (See Figure 1). In the original CA model, each
cell has the same neighborhood definition; however, in the suggested model each cell
does not have to have the same neighborhood definition,

I

SR n L‘[}{B -

N -0 -0
- 0000

e

AR L1
_q}. e ﬁ] e

Class (a) Class (b}

Figure 1. The original CA model (a) and the suggested CA model (b) in two-dimen-
sional cellular space.

182

Neighborhood degree of a cell can be defined as the number of neighbors that this
cell accepts state values to specify its next state. In the original CA model each cell has
the same transition function definition, but in the suggested CA model only the cells hav-
ing the same neighborhood degree have to evolve according to the same transition func-
tion rules. In other words, different neighborhood degrees may cause different transition
functions. In the suggested CA model, there is no distinguished state called quiescent
state which causes a cell to stay at quiescent state if all of its neighbors are in quiescent
state in the original model. The transition functions of the modified model do not have
to have such a distinguished state, In the suggested model, there is no initially set neigh-
borhood structure of cells, Neighborhood of each cell is determined according to the na-

ture of input and output patterns desired to be mapped. In the original model, the neigh-
borhood structure of cells is static and fixed,

The modified CA model has two modes of operation similar to NN model: training
and classifying (or mappins). In the training mode, neighborhood degree and transition
functions of each cell are determined using input-output template pairs, Once cell func-
tions are defined, one can intreduce any input template to the system and get its intended
output template. In a sense, the whole cell system can be considered as a classifier, Dif-
ferent from NN systems, the suggested CA ‘system has no error correction capability or
fault tolerance pro‘{)erty. In NN systems, simiﬂr input patterns may converge to the same
output patterns and this property is very important and useful in recognition and classifi-
cation systems. However, in the proposed model, since the transition functions are de-
fined as mapping but not as inequalities (threshold function in Neural Nets), similar input
patterns cannot be guaranteed to converge to the same output pattern.’ Patterns other
than the input patterns used during training may be not m:}gged. or such unmapped pat-
terns, a state 'X' is introduced in order to complete the definition of local transition func-
tions. If such a pattern that is not mapped during training mode is extracted from the in-
put template the next state of current cell for that pattern becomes 'X'. Therefore, a cell
1n the suggested model can be in one of three states {0, 1, X}.

One of the famous neural network models is the Hopfield's Net model, In this mod-
el, neurons are assumed to be fully-connected, i.e., each of n neuron is connected to and
gets input from the other (#-7) neurons. Thus, each neuron is functionally dependent on
every other neuron. Especially for hardware implementations of neural networks, de-
creasing-the number of neural connections in nets is an important problem. In the sug-
gested cell system, each cell depends on only its neighbor cells and the state of other
cells need not be considered. If the input patterns are very similar to each other, neigh-
borhood degree of cells increases and as a result, the system's performance decreases.
On the other hand, input patterns having different characteristics i.e. different bit se-
quences decrease the degree of neighborhood and increase the system's performance.

The modified CA system makes its decision in one steg of evolution similar to Per-
ceptron and Kohonen Neural Network models. In some other NN models, such as Hop-
field Model, system evolves until it converges to a stable configuration and the resulting
configuration is the system's decision on the introduced input pattern.

The suggested cell model can simply be considered as a parallel mapping system. It
maps a_given inlput template to an output template, both introduced during trainin
mode, in parallel. Pseudo code of algorithm used to construct the modified CA mode
for introduced input-output templates is as follows:

1. Get input and output templates
2. Set number of cells in the cell system equal to-the number of bits in one in-
put (or output) template
3. Set neighborhood degree of each cell to 1
4. While there are more cells to be processed
4.1. While there are more templates to be processed
4.1.1. Extract bit pattern of current cell from the current input

183

template being processed which is constituted by itself and
its current neighbors
4.1.2, If this pattern with degree of neighborhood i is
mapped to a different output bit before
4.1,2.1 Increase neighborhood degree i of current cell by 1
4.1.2.2 Go to step 4.1.1
4.1.3. If this ll)attem is not mapped to any output bit before
4.1.3.1 Add input pattern and its output bit into look-up table
as a rule for cell transition function of current
neighborhood
.3.2 Skip to the next template
.1.3.3 Go to step 4.1
this pattern is mapped to the same output bit before
4.1.4.1 Skip to the next template
4.1.4.2 Go to step 4.1
4.2, Skip to next cell
4.3. Go to step 4
5. Now, the neighgorhood degree and the transition function of each cell is
determined. Read input template desired to be map
6. For each cell of input template apply its cell function determined at pre-
vious steps, and find output bit of that cell. Next state of cells constitute the
output template produced by the system

4.1.3.
4,1.3,
4.1.4.1

The method to extract an input pattern from an input template for a cell with current
neighborhood degree k, is to first take the bit at current cell position and continue taking
bits one from the right and one from the left until the current neighborhood degree k is
reached (See Figure 2).

Figure 2. The order of bit extraction from an input template, for k = 8

Input templates are assumed to be one-dimensional and circularly connected, i.e. the
left nclf;hbor of the first cell is the last cell, and the right neighbor of the last cell is the
ﬁlrst cell, Also, the length of an input template is equal to the length of the output tem-
plate.

An important question should be asked here: "Does the algorithm guarantee that the
program will not enter into an infinite loop and will not increase the neighborhood de-
§ree to infinite?" Confliction case between two input patterns may occur if their output

its are different, Two different t of confliction may occur. One is external conflict
and the other is internal conflict. External conflict occurs when the output bit of the cur-
rent cell conflicts with the output bit of the input pattern of a different template. Exter-
nal conflict does not cause an infinite loop. Since the input templates that are introduced
are guaranteed to be different from each other (that is, one input template can only be
mapped to a unique output template), one can guarantee that the conflict case will cer-
tainly be resolved when neighborhood degree of the cell is the length of the input pattern
(i.e. input pattern = input template),

Internal conflict occurs when input patterns of conflicting output bits on table are
patterns of the same input template. Since the input templates of conflicting output bits
are the same, confliction cannot be resolved as it can be in external conflict when neigh-
borhood degree of cell reaches its maximum value, Instead, this problem can be solved
by concatenating the output bit of the cell to the end of the input template, making two
input templates different, and adding it into table with its output bit. Therefore, the
maximum number of neighbors that a cell can have is (n+1), where n is the length of

184

the input template, and it is reached when successive internal conflicts occur. Here, +/
in n+1 comes from the output bit of the cell. As a result, we can say the algorithm
guarantees that the program will not to enter into an infinite loop, because both external
and internal conflictions are resolved,

4. COMPUTATION ON THE SUGGESTED CELLULAR AUTOMATA MODEL

"Computation can be done in infinite uniform.cellular automata structures” [6]. In
such structures, the number of cells in automata is infinite and the neighborhood struc-
ture should be local and regular i.e. the: same for all cells. However, in finite structures
of cellular automata networks these restrictions are no longer considered and such a net-
work can be defined as triple:

N = (G, Q, F) where

G:a dilrlected graph of order n, representing the interconnection of vertices (or
cells) .

Q : the finite non-empty set which represents the set of states that cells can as-
sume

F : a collection of functions from Q" (n is the number of cells in structure) into
itself, representing the set of possible global transition functions of the net-
works. The global transition function is comprised of the local transition
functions of individual cells and determines the network's global behavior.

Each cell of the automaton is represented by a vertex on a graph. If a cell i has
neighbor / (i.e. i is dependent on the state of j at time ¢ in order to determine its state at
time #+4-1), then there is an arc from vertex j o i on the graph, An example graph of the
suggested modified automata model can be given. Assume that we have 6 bit length
input-output pairs, and at the end of the training mode, neighborhood degree of cells
from 1 to 6 are determined as 3,2,2,4,5,6. The resulting graph will be as in Figure 3.

Figure 3. Graph of an example modified cellular automaton model

Now, it may be asked "Is it possible to do computation on the suggested model?” In
networks of the form N = (G, Q, A(Q™) where N is a network with arbiLra.?r graph
connections, G and Q are as explained above, and A(Q") is the set of mapping from QU
ti)nt("l‘ itﬁelf, the computable functions are characterized by the following theorem proposed

y Tchuente:

Theorem: For any finite set Q of cardinality greater than one, A(QM) is computable
on a network N = (G, Q, A(QY) of order n, if and only if G is strongly connected and
contains a vertex v, such that, for any vertex v; <> vy (v, vy), is an arc of G.

Proof of the theorem can be found in [6]. This theorem can help us determine the
conditions under which one can do computation on the suggested modified cellular au-
tomaton. In the suggested model Q = {({ 1, X} and its cardinality is 3 which is greater
than 1. A(Q™) depends on the nature of input-output templates and is a mapping from Q"
to itself. n is the number of bits of one input or output template, However, one cannot
guarantee the existence of a cell having neighborhood degree n, in other words, a vertex
having arcs from each of the other vertices into itself or strong component, for given
input-output pairs. Therefore, the answer to the question “Is it possible to do computa-
tion in the suggested non-uniform finite cellular automata network?" is, not always.
This is because the topology of the graph of automaton network depends on the nature of
input-output templates.

Example:
Assume that we have the following input-output templates:

Table 1
Sample input and output templates.

Pair # Input Template Output Template
1 01000 11110
2 00000 11100
3 01101 11010
4 10001 10100
5 10110 10101

The neighborhood degree of cells from 1 to 5 at the end of the training mode are 1,
3, 2, 5 and 4, respectively. As can be seen from the graph of the example automata net-
work (Figure 4), computation can be done on this cellular structure, because the fourth
vertex has arcs from all other vertices.

Figure 4. Graph of a one-dimensional modified cellular automaton,

186

5. CONCLUSION

In this paper, a modified cellular automata model capable of doing classification (or
mapping) is introduced. Also, it is shown that one can do computation on this model
depending on the nature of input and output templates. At the end of this study, we
constructed a model that can map a given input template to its correspondi(;ldg output
template, that were both introduced during training (or feature extraction) mode of the
system, The model squests a different way of representation of information. It converts
input and output templates into a form constituted by a look-up table and a neélghborhood
array, Look-up table keeps n-to-1 maﬁpings showin% the next state of cells. The neigh-
borhood array contains the neighborhood degree of each cell in the automaton. This
kind of representation of information does not provide an efficient method for storage of
information. However, it is in a form that can suitably be used for garallel processing.
The larger the size of look-up table, the longer the time to search it. y means of classi-
cal searching methods, look-up table search fime can be decreased up to a degree.

An alternative to look-up table can be functional representation of it. One can find a
function for each neighborhood degree. This makes the model more storage efficient and
eliminates the need for table look-up that decreases the time efﬁciencisof the model, A
method for finding these functions could be the use of neural networks. For example,
since the look-up table contains n-to-1 mapgings for each q:?hborhood degree, multi-
layer perceptron model of neural nets can be suitably applied to each of the different
neighborhood degrees. The use of neural nets in combination with the suggested model
increases the training time, especially if multi-layer perceptron is trained by the gradient
back-propagation method, but decreases the system's classification (or mapping) time,

An interesting propertl)" of the stijggested model is that computation can be done on it
if it has a cell whose neighborhood degree is e%ual to the length (in bits) of a template,
dependix;% on input and output templates. In other words, if there exists a cell which is
functionally dependent on all of the other cells in the automaton, computation can be
done on this automaton,

6. REFERENCES

[1]1 Goles, E., Martinez, S., Neural and Automata Networks Xluwer Academic Pub-
lishers, Netherlands 1990,

[2] Hopfield, J.J., Neural Networks and Physical Systems with Emergent Collective
Computational Abilities, Proc. Nat.- Acad. Sci.” USA, 79(1982) 254-2258,

(3] Kilig, H., Non-uniform Cellular Automata Networks Having Capabilz%of Classi-
j;iggtzion and Computation, Master's Thesis, Middle East Technical niversity,

(4] Lippmann, R.P., An Introduction to Computing with Neural Nets, IEEE ASSP
Magazine %}n‘il 1987,

[5] Packard, N.H., Wolfran, S., Two-dimensional Cellular Automata, Journal of
Statistical Physics, Vol 38 901-946 1985.

[6] Tchuente, M., Automata Networks in Computer Science, Princeton Univ. Press

Princeton, New Jersey 1987,
[7] Von Neumann, J., Papers of John von Neumann on Computing and Computer
Theory, edired by W. “Aspray and A.W. Burks, Cambridge, Mass, : MIT Press

[Sllglé)ifi’agns, S., Universality and Complexity in Cellular Automata, Physica 10D

187

