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Abstract

Leacning when limited to modification of some parameters has a limited scope; the

capability to modify the system structure is also needed to get a wider range of the learnable. In
the case of artificial nevral networks, learning by iterative adjustment of synaptic weights can
only succeed if the network designer predefines an appropnate network structure, i.e., number
of -hidden {ayers, units, and the size and shape of theic receptive and projective fields, This paper

~. advocates the view that the network structure should not, as usually done, be determined by

trial-and-error ‘but should be computed by the learning algorithm. Incremental learning
algorithms can modify the network structure by addition and/or removal of units and/or links, A

- survey of currént connectionist literature is given on this line of thought. The reader is referred
to (Alpaydin, 1991) for the author's own contribution to the field.

Ozet

Eger ogrenme sadece baz parametrelerin degerlerini degistirebilmek ise kullanim alant

kisitlt kalir;- 6grenilebileceklerin olabildigi kadar genis olmasi igin sistemin yapisinin da
degistirilebilir olmas gerekir. Yapay sinir aglarinda sadece baglantt agliklarinin ayarlanmasy ile
gerceklesen ofrenmenin bagarilt olabilmesi ancak ag yapssinin, yani sakli katman ve sakli tnite
sayilart ve bunlarin onceki ve sonraki katmanlara baglanti yeklinin, kullanim alanina uygun
olmasi ile gergeklegebilir, Bu teblig, ag yapisinin belirlenmesinin sikca yapildigs gibi deneme-
yanima ile degilde, yine 6frenme yordaminin kendisi tarafindan yapilmasy gerektigini savunur.

Bu tip yordamlarda a§ yapisi, 6rnegin hata geri yayma yordaminda oldugu gibi duragan degildir;
gerektiginde yeni inite ve baglanular eklenebilir veya olanlar gikarilabilir, Bu teblig, bu konuda
yapilmis galismalarin bir ozetini verimektedir; yazarin bu alana katkisi igin, okuyicu (Alpaydm.
1991)'e bagvurmaya davet edilir.

1. INTRODUCTION

1.1. Assessing the quality of a neural network solution

(1]

(2]

There are three factors that affect the quality of a neural network solution:

Success dclileved on test data indicates how well the network generalizes to data unseen
during training which one wants to maximize. This generally is taken as the ‘only
performance criterion.

Nerwork complexity by itself can be very difficult to assess but two important factors
are the serwork size and the processing complexiy of each vt Network size gives the
memory required which is the product of the number of connections and the number of
bits required to store each connection weight, Processing complexity depends on how
costly it is to implement processing occurring in each unit, e.g., sigmoid vs. threshold
non-linearity, fan-in, fan-out properties, precision in storage and computation, etc. This
has a negative effect on the quality as one prefers smaller and cheaper networks.
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[3] Learning time is the time required to learn the given training data till one gets a
reasonable amount of performance. This is to be minimized also.

In the ideal case, learning algorithms where a certain cost function is minimized should
take into account not only success but the whole quality measure including success, network
complexity, and learning time. However the actual relative importances of these three factors
depend on the application and the implementation constraints. In tasks like optical character
recognition where the environment does not change and thus learning is done only once,
learning time is not a critical factor, On the other hand, when a hardware implementation is
envisaged, network complexity is important and a smaller but less successful network can be
preferred over a more complex but very successful one. In tasks like robotics where rapid
adaptation to the environment is necessary, learning time has crucial importance, The best neural
network for a given application is one having the highest quality and thus it does not make sense
to say that one algorithm is better than another one per se; only based on a certain aipplication
and a set of implementation constraints can solutions be compared among themselves. This
implies that with different hardware and environmental constraints, for the same training set,
different networks may be required. The learning system may have a repertoire of learning
algorithms and depending on the current constraints, one is chosen and employed. For example,
when rapid adaptation is necessary, a one-shot learning method may be used to quickly learn
encountered associations. When the system later has time to spare, an iterative fine-tuning
process may be employed to improve performance.,

1.2. Why smaller and simpler is better

In the case of feed-forward layered networks, the mapping capability of a network
depends on its structure, i.e., the number of layers, and the number of hidden units (Lippman,
1987; Hanson & Burr, 1990; Hertz et al., 1991). Given a certain application and training data,
the network structure should be pre-determined as algorithms like the back-propagation
(Rumelhart et al., 1986) can modify only the synaptic weights but not the net structure.

Networks with more layers and hidden units can perform more complicated mappings
however better performance on unseen data, i.e., generalization ability, implies lower order
mappings. Given a certain training set, there are very maay possible generalizations and one is
interested in the simplest possible generalization. One reason for this is that simpler explanations
of a phenomenon, i.e., those that require a shorter description, are more plausible and have a
higher probability of occurrence (Rissanen, 1987). By having a smaller network, one also
decreases the network size and thus less memory is required to store the connection weights,
and the computational cost of each iteration decreuses.mgowever note that although one iteration
takes less in a smaller network, the number of iterations to learn a certain training set can be
more. Frequently an analogy is made between learning and curve fitting (Duda & Hart, 1973),
There are two problems in curve fitting: finding out the onder of the polynomial and finding out
the coefficieatsof the polynomial once the order is determined. For example given a certain data
set, one first decides on that the curve is second order thus has the form 1x)=ax? +bx+cand
then computes somehow values of 4 4 and g e.g., to minimize sum of squared differences
between required and predicted ;) for x; in the training set. Once the coefficients are
computed, fk;) value can be computed for any x; even for . that ace not in the training set.
Orders smaller than the good one risk not to lead to good approximations even for points in the
data set. On the other hand, choosing a larger order implies fitting a high order polynomial to
low order data and although one hopes that the high order terms will have zero coefficients to
have their effect cancelled, this practically is not the case; it leads to perfect fit to points in the
data set but very bad ;) values may be computed for & not in the training data, i.e., the
system will not generalize well.

Similarly a network having a structure simpler than necessary cannot give good
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approximations even to patterns in the training set and a structure more complicated structure
than necessary, i.e., with many hidden units, "overfits" in that it teads to nice fit to patterns in
the training set performing poorly on patterns unseen. Bigger networks also need larger data
samples for training; it was pointed out (Miller & Reinhardt, 1990) based on an information
theoretic measure that the required number of patterns in the training set grows almost linearly
with the number of hidden units. :

As currently there is no formal way by which the network structure can be computed
given a certain training set or application, the usual approach is trial-and-error, i.e., a series of
attempts are made each one involving deciding on a more complicated network structure and
iterating the learning algorithm a considerable number of times until one is content with the
petformance, which can be assessed by cross-validation. In determining the structure, the
network designer is only guided by his/her intuition and rather limited knowledge of the
application and the learning algorithm. Any knowledge related to the problem concerning the
geometry or the topology of the input should be introduced to the network as help (Denker et
al., 1987). When the input is an image for example, most of the constraints are local, i.e.,
nearby pixels have correlated output, thus it makes more sense to define local receptive fields
than completely connected layers (Le Cun et al., 1989). A recent approach is to use a genetic
algorithm to be able to "produce” better structures (Harp et al., 1990). The problem however is
that “parent" networks should be trained for their fitness to be assessed and in tasks where
training set is large or many generations are necessary, this turns out to be not very practical.

1.3. One-shot on-line learning

The time it takes to learn a given training set is crucial in many applications. Iterative
algorithms based on gradient descent require very many iterations to converge and thus one is
compelled to learn off-/ine Another reason for off-line learning besides learning time is that,
network models in which associations are distributed over a set of connections need to be
introduced patterns in an unbiased fashion which cannot be guaranteed in a real world
operational environment. One cannot for example add a certain association to network's memory
by training with one pattern only; as weights are distributed, the whole training set should be re-
‘learned together with the new pattern. However in an oa-Lne learning system, one does not
have time to do this and neither there is memory to store the whole training set. This is the case
in many robotics applications where rapid adaptation to environment is a must. Iterative
algorithms or networks using a distributed representation thus cannot learn at oze-shof on-line.
This fact led to the belief that neural network models cannot learn one-shot on-line and this
became a frequent point on which learning limits of neural models are negatively judged
(McCarthy, 1990; Leveit, 1990). To be able to learn on-line, addition of a new association
should be done very quickly, i.e., one-shot, and without affecting the past existing knowledge
of the network for other inputs. GAL algorithm (Alpaydin, 1991) using a local representation
and based on an incremental approach has both of these properties and is a connectionist method
that learns at one-shot.

2. INCREMENTAL LEARNING

The idea of incremental learning implies starting from the simplest possible network and
adding units and/or connections whenever necessaty to decrease ervor (Alpaydin, 1990). To be
able to decrease network size and increase generalization ebility, one also wants to be able to get
rid of units-connections whose absence will not degrade significantly system's performance. In
both cases, as opposed to a static network structure, small modifications to a dynamic network
structure during learning is envisaged, Determination of the network structure and computation
of connection weights are not done separately but together, both by the learning algorithm.

Approaches given in the connectionist literature leading to network ‘structure
modification can be divided into two classes. There are those that start with a big network and
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eliminate the unnecessary and there are others that start from small and add whatever is
necessary + :

INCREM ENTA\L LEARNING
v.w"’/ ‘-"’ i "W‘\‘~ .
(;/,»”" b S ,‘.««"‘
o e
Start big aind remove Start small and add
) A N B f""‘ \n__
gl ’ \‘\\_ , c A o \“x
. o o« ~
Compute importance Modify error function Local Distributed
and remove to prefer simpler reprasentation representation
o Skeletonization (Mozer & o Weight decay o Restrioted coulomb - 0 Generation (Honever &
Smolen?ky. 1989) o (Chsuvin, 1989) energy (Reilly et al., 1982) Uhr, 1988)
° (annm. 1990) o (Hangon & Praxt, 1989) o Recruitment learning o Puirwise (Knerr et al,, 1989)
© Optimal brain demage o Minimal description length (Diederich, 1988) o Tiling (Mezard & Nudal,199)
(Le Cun ct. ul., 1990) (Weigend et al., 1991) 0 GAL (Alpaydin, 1988, 1990) o Dynemic noda creation (Ash,
© OAL (Alpaydin, 1990) “awake" moda 1989)
sl;:p mode o Upstart (Frean, 1990)
o (Siestma & Dow, 1991) o Cascade correlation (Fahlman
.‘ & Leblere, 1990)
o (Hirose et al,, 1991)

Fig. 1. Taxonomy of incremental learning,

2.1, Start big and remove

In the context of polynomial curve fitting the "start big and remove" approach implies
starting from a high order polynomial and eliminating those high order terms which do not
contribute significantly to success. Such methods are also called pouningor desteuctive If one
starts with a large network and if the problem in fact requires a simpler network,” one likes to
have the weights of all uanecessary connections and the output of all unnecessary units equal to
zero. There are two approaches in achieving this:

[1]  One may explicitly try to compute how important is the existence of a connection/unit in
keeping the error low after the network has been trained and a number of the least
important may then be deleted. The remaining network needs to continue to be trained.
Inthe ideal case, understanding the importance of a connection/unit requires training two

' Note that there are also incremental uasuperiised learning algorithms like ART (Carpenter &
Grossberg, 1987) and GAR: (Alpaydin, 15;0&) which are beyond the scope of this paper. In
unsupervised incremental learning, one adds a new cluster index whenever the current input is
not similar to any of the existing clusters. The similarity measure is thus done in the input space
regardless of the class to which the input patterns belong.
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networks one with the connection/unit and onie without. As this is not practical for large
networks, heuristical approaches have been -proposed with the back-propagation
algorithm where the sensitivity of the error function to the elimination of a
connection/unit is estimated.

. In the "skeletonization" procedure (Mozer & Smolensky, 1989), the network is trained
till a certain performance criterion is met. The "relevance” of each connection is then computed
which is given as the partial derivative of error with respect to the connection. However this
value tends to zero when error decreases thus a poor relevance is computed when error is low.
Using a linear error function for computation of relevances, i.e., the sum of the absolute valve
of the differences of required and actual values, leads to better relevance values.

. (Karnin, 1990) computes the "sensitivity” in the same way but sums the values
computed throughout learning instead of computing only once at the end. More memory and
computation is required but the usual quadratic error measure can be used.

o "Optimal brain damage" (Le Cun et al., 1990) uses an information theoretic measure to
compute the "saliency” of & connection using the second derivative of the etror function.
Training proceeds till error reaches down to a certain valve at which point saliencies are
computed and a number of the least salient are deleted and the remaining network is re-trained.

. Grow and Leara (GAL) algorithm (Alpaydin, 1990a), has a "sleep” mode during which
the network is closed to the environment, the inputs are generated by the system itself, and units
that are no longer necessary due to recent additions are removed.

» Siestma and Dow (1991) examine the behavior of units under the presentation of the
entire training data and decide to prune accordingly. From “broad" networks with few layers
and many units on each layer, after training, they trim as many units as possible and by adding
extra layers, generate "fong narrow” networks with many layers but few units on each layer;
they discover however that networks of the latter type generalize poorly.

[2] Instead of approximating how much the error will change if the unit/connection is
eliminated, one may also modify the learning algorithm so that after training, the
unnecessary connections/units will have zero weight/output.

. One may build a tendency in the learning algorithm to have those weights that are not
relevant decay to zero by decrementing them by a certain factor at each weight update (see
review in Hertz et al., 1991). Weights that are necessary to store associations will be moved
away from zero but those that are not needed will not be increased and will finally be close to
Zero.

. This decay can be done also implicitly by modifying the error function. Terms can be
added to the error function to penalize large weights (Chauvin, 1989) and hidden units that have
small outputs (Hanson & Pratt, 1989).

. Another possibility is to use the information theoretic idea of "minimum description
length” and add a term to the cost function that pénalizes network complexity, i.e., number of
connections (Weigend et al., 1991), Thus during gradient descent, the algorithm will settle to
the network that has the best trade-off between error and complexity. Such a cost function is
similar to the quality measure proposed in the first section; however the network complexity is
defined very simply as the number of connections.

2.2. Start small and add

The other approach in dynamic modification of network structure during learning, which
can be named "start small and add,” implies starting from a simple network and adding units
and/or connections to decrease error. These methods are also called growehor constrveave In
the context of curve fitting, it implies starting with a low order polynomial and adding higher
order terms whenever the polynomial of current order cannot give a good fit for any set of
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coefficients. Note that this cannot be done in a straightforward manner especially in networks
where associations are distributed over a number of shared connections; the whole training
should be re-done in such a case. One needs a certain mechanism whereby addition of a new
unit improves success instead of corrupting the harmony as.one would normally expect. There
are two possibilities:

[1] If one can make sure that when the new unit gets activated, none of the ancient units get
activated, there will be no problem. The units should thus somehow be able to suppress
other units when they get control. This implies a competitive strategy and a local
representation.

. The first incremental neural learning algorithm is the Restricted Coulomb Energy (RCE)
model (Reilly et al., 1982) which is an incremental version of Parzen windows. Associated with
each unit is a number of prototypes where a prototype gets activated only if the input falls into
its domination region, determined by a distance computation followed by a thresholding. If an
input does not activate any prototype, a new prototype unit is created at that position with an
initially large domination region. Ig'rototypes that get activated for inputs that belong to different
classes are penalized by having their regions decreased which is done by modifying the
threshold, The input space is thus divided into zones dominated by prototype units. A number
of sweeps is necessary to finetune the thresholds where units closer to class boundaries have
small zones and units interior have larger domination zones.

. Recruitment learning (Diederich, 1988) is used in the case of structured connectionist
networks where a previously free unit is committed to represent a new' concept and required
connections built up dynamically (Feldman, 1982). This is a one-shot learning algorithm, i.e.,
one iteration is sufficient to learn a new concept.

. In the first version of Grow-and-Learn (Alpaydin, 1988), weights in a single layer were
learned by Hebbian learning at one shot. However if an association could not be learned or if
addition of this association corrupted the previously learned associations, a new hidden unit was
added with input weights equal to the input vector. The output weight was computed in such a
manner to compensate for the effect of the input layer and thus impose any ‘output. The problem
was that as Hebbian learning was used, orthogonality of input patterns were necessary and as
this is rarely the case, many uvnits were allocated. However Hebbian learning made the algorithm
a one-shot learning one. o

. The current version of Grow-and-Learn (GAL) algorithm (Alpaydin, 1990a), uses also a
local representation by having a aumber of exemplars associated with each class. It learns at
one-shot but orthogonality of patterns is no longer required.

2]  Another possibility is to divide the network into separately trained subnetworks where
such subnetworks can be added in an incremental manner. One approach is to have
subnets that have competition between subnets, another is to have each subnet as another
hidden layer.

. The "generation" method proposed by Honavar and Uhr (1988) enables a "recognition
cone" to modify its own topology by growing links and recruiting units whenever performance
ceases to improve during learning by weight adjustment using back-propagation.

. The "stepwise procedure” uses subnets of different conceptual interpretations (Knerr et
al., 1989). In this method, one first trains a one layer network with the Perceptron learning
algorithm assuming that classes are linearly separable. For a class where this is not satisfied,
one adds a subnet to separate classes in a pairwise manner. For cases where this does not work
either, one performs a piecewise approximation of boundaries using logical functions by
additional subnets. As linear separability is rarely the case, one generally is obliged to separate
classes in a pairwise maunner two by two. The major drawback of this is that the number of
hidden units increase exponentially with the number of class units.
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. Asother approach named the "tiling" algorithm adds a new hidden layer whenever the
required mapping cannot be done with the existing network (Mezard & Nadal, 1989; explained
also in Hertz et al., 1991). There is a "master” unit which is trained to be the output unit by the
pocket algorithm---a variant of the Perceptron learning algorithm. If this unit cannot learn all the
required associations, additional "ancillary" units are added to-learn the rest and another layer is
created with a master unit and learning proceeds till the master unit can learn to behave like the
output unit.

. The "dynamic node creation” method (Ash, 1989; explained also in Muller & Reinhardt,
1990) trains networks with one hidden layer only. Givena certain net that is being trained, if the
rate of decrease of etror falls down a certain value, a new hidden unit-is added and training is
resumed when all connections are continued to be modified.. - :

. The "upstart” algorithm (Frean, 1990) uses binary units, Like the "tiling” algorithm, first
one unit is trained to learn the required associations using the pocket algorithm, If this is not
successful, "daughter” units are created to correct the output of this "parent” unit, for "wrongly
on" and "wrongly off" cases. This is repeated in a recursive manner to lead to a binary tree
which can then be "squashed" into one hidden layer. : : :

. In the "cascade correlation” algorithm (Fahlman & Lebiere, 1990), if the required
mapping cannot be learned by one layer, a hidden unit is added and trained while the previously
trained weights are "frozen."” If this does not work either, another hidden unit is added as
another hidden layer and so on. A hidden layer has only one hiddea unit but connections skip
layers, i.e., a unit has connections to all the following layers.

. Method proposed by (Hirose et al., 1991) is quite similar to that proposed by Ash
(1989), namely, using a network with only one hidden layer, if the rate of decrease for error
becomes small, additional hidden units are added. Their contribution is that, once the network
converges, the most recently added hidden unit is removed and the network is checked to
determine whether the same function can be achieved by fewer hidden vnits. If the network
cannot convetge when a hidden unit is removed, the last network that converged is chosen as
the final network.
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