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Abstract
This paper discusses commonsense set theory. First a brief review of classical set theory

is given. Then the need for a commonsense set theory is questioned and the properties of
a possible theory are examined. Finally, previous work in the area is presented.

1. BRIEF REVIEW OF EXISTING SE’I; THEORIES

Set theory is a branch of modern mathematics with a unique place because other
branches can be formally defined within it [1, 2]. The theory had started with the work
of Cantor on infinite series. In his early conception, he thought of a set as a collection
into a whole of definite, distinct objects of our perception or thought [3]. It did not take
a very long time for this theory to be revised. Several paradoxes, including Russell’s
famous paradox of “the set of all objects which have the property of not being members
of themselves,” were introduced, leading to new axiomatizations of the theory [4].

Among the various axiomatizations, are Russell and Whitehead’s Theory of Types [5]
which brings in a hierarchy of types to forbid circularity and hence avoid paradoxes, and
von Neumann, Bernays, and Godel’s NBG which introduces the notion of a class for
the same purpose [6]. Strengthening NBG, a new theory, called MK (Morse-Kelley) was
obtained (7, 8]. This theory is suitable for mathematicians who are not interested in the
subtleties of axiomatic set theory. In 1937, Quine proposed his New Foundations, NF, to
overcome some unpleasant aspects of the Theory of Types while keeping the main idea
same [9]. He introduced the notion of siratification for this purpose. NF is a nice theory,
avoiding Russell’s Paradox, and allowing all mathematics to be defined within it, but has
some strange properties. For example, Cantor’s Theorem, ¢ < 2%, cannot be proven in
NF, because a set used in the proof is not defined since it is not stratified. In general,
the most popular axiomatization is ZF, originated by Zermelo [10] and later modified by
Fraenkel [11]. The intention was to build up mathematics by starting with the empty set
and then construct further sets cumulatively by various operators. This hierarchy works
as follows [12]. ‘ :

Initially, the Axiom of Extensionality says that a set is completely determined by its
members. The Null Set Aziom states the existence of the empty set §. The Pair Set
Aziom then constructs the sets 0, {8} and {0, {0}}, and other one and two element sets.
It is the Sum Set Awiom which constructs sets with any finite number of elements by
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Figure 1: ZF universe extending in a cumulative hierarchy
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Figure 2: AFA representation of the circular set = {02}

defining union of existing sets. Finally, the Aziom of Infinity states the existence of at
least one infinite set from which others can be formed, viz. {0, {0}, {0,{0}},...}. This
hierarchy can be depicted as in Figure 1. There is also the important Aziom of Foundation
which basically prohibits sets which are members of themselves, thus avoiding the classical
paradoxes.

In spite of its popularity in current research, ZF has its drawbacks. It is weak to decide
some questions like the Continuum Hypothesis. It is also weak in some applications (set-
theoretic, linguistic) which make use of self-reference, since circular sets like z = {x} are
‘prohibited by the Axiom of Foundation. ZF is also strong in some ways, viz. it violates
the parsimony principle which states that simple facts should have simple proofs (13].
(This can be seen in the use of the Power Set Axiom in the proof of a simple notion
like @ x b.) It can also be claimed that it is bad for mathematical practice that all the
mathematical ob jects are to be realized as sets. ' ,

New theories have been developed throughout the century besides the huge amount
of research in ZF. The Admissible Set Theory which originated in the Sixties is one of
them. Work on admissible ordinals resulted in a first order set theory called KP (Kripke-
Platek). Barwise weakened KP to a new theory KPU by readmiiting urelements which
are indivisible individuals [13]. KPU is an elegant theory which supports the cumulative
hierarchy. It overcomes some of the disadvantages of ZF and seems to obey the parsimony
principle. But it still cannot handle circular sets.

It is the Hyperset Theory which can do that. The origins of this theory are in the late
Twenties, but it evolved throughout the century. The theory makes use of graphical rep-
resentation of sets. In the Eighties, Aczel got interested in the subject and proposed the
Anti-Foundation Aziom (AFA) [4]. With the existence of AFA, one can easily represent
circular sets as in Figure 2. But what is more remarkable with the theory is that it does
not require other axioms of ZF to be thrown out. Aczel’s theory was successfully used by
Barwise and Etchemendy in their thought-provoking work on the Liar Paradoz [14].




2. COMMONSENSE SET THEORY

Representing all compound entities and the relations between their parts in terms of
sets gave rise to the success of set theory in mathematics. This also seems to apply to
commonsense reasoning as well. McCarthy has mentioned the possible use of set theory
in Al and invited researchers to concentrate on the subject {15]. Unfortunately, not much
progress has been made since then. In the sequel, we will study some noteworthy research
essentially due to Perlis [16], Zadrozny [17], and Mislove et al. [18].

If we want to design an intelligent machine which will work in the realm of human
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: make inferences from that knowledge. Commonsense reasoning involves three main parts:
a domain theory, knowledge representation, and inference. We are primarily dealing with
knowledge representation issues. The first idea is to represent commonsense notions by
sets. To take a classical example, we can consider the commonsense notion of society as a
relation between a set of people, rules, customs, traditions, etc. Here, we face the problem
that commonsense ideas do not have precise definitions as mathematical ideas do. For
example, in the definition of society, the notions of tradition and custom are as complex
entities as the definition itself, and should best be left to intuition. However, sets may
still be useful in conceptualizing such terms. One may, for instance, want to consider the
set of societies disjoint from any set of individuals. Moreover, the idea of collecting a set
of individuals for further thought is still an important process, e.g., the Comprehension
Principle.

A theory proposed for use in commonsense reasoning can be examined in a variety of
ways. The first point to examine is the concept of set formation, immediately leading to
the question whether to admit urelements or not. It seems intuitive to answer affirmatively
because this matches with the naive notion of a set as collecting individuals satisfying a
property into a whole. '

But then we directly face Russell’s Paradox. The problem is due to using a set whose
completion is not over yet in the formation of another set, or even in its own formation.
Then we are led to the question of when to consider a set of individuals satisfying a
property as an individual itself. This brings the notion of cumulative hierarchy into
picture. Cumulative hierarchy is one common construction of our intuition and can be
illustrated by the example in Figure 3 where we start with simple blocks, and make towers
out of blocks, and make walls out of towers, and so on.

In the cumulative hierarchy, any set formed at some stage must be consisting of ure-
lements (if any) and the sets formed at some previous stage. At this point the problem
of “sets which can be members of themselves” arises, because they are used in their own
formation. Circularity is obviously a common means of commonsense knowledge repre-
sentation. For example, we should allow the unique set of all non-profit organizations
to be a member of itself, since it may also be a non-profit organization (which is not
an unexpected event). So, a possible theory should allow circular sets. Barwise and
Etchemendy’s work also demonstrates beyond doubt that circularity is an integral part
of our daily discourse and hence should be allowed by a commonsense set theory [14].

One further aspect to be considered is “possible” membership. A commonsernse set
theory may be helpful in providing representations for dynamic aspects of language by
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Figure 3: A simple hierarchical construction representing the cumulative hierarchy

making use of partiality. We can allow our sets to have possible members as well as real
members. Then we can have an operation of clarification to determine the real members
among possible ones,

Other-set theoretical issues to be considered include cardinality and well-ordering. For
example, imagine a box of 34 black and 16 white balls. We know that there are 50 balls
in the box, or formally the cardinality of balls in the box is 50. After shaking the box,
we would say that the balls are not ordered any more. But this is not true in classical
set theory since a set with finite cardinality must have a well-ordering [17). Counting
is another aspect to be considered. While the formal principles of counting are precise
enough, we may observe that people also use quantifiers like “many,” “more than half.”
For example, a system which can represent the phrase “A group of people are walking
towards me” should not probably answer questions like “Who is the first one?” since
there does not exist a well-ordering for the set under consideration.

There is relatively little work done in commonsense set theory. Perlis introduced a series
of theories for this purpose. He first proposed C'ST, which is a version of naive set theory
with only an axiom of comprehension. Then he extended it to C'ST; using Ackermann’s
Schema [19] to support cumulative hierarchy but still could not handle circular sets with
it. Finally he proposed C'ST; by combining C ST} with the universal reflection theory of
Gilmore and Kripke [20]. While this theory can represent circular sets, its consistency is
not proven yet.

Zadrozny, who does not believe in a “super” theory for commonsense reasoning, con-
centrated on cardinality and well-ordering issues mentioned above and proposed some rep-
resentation schemes. He introduced a non-standard class of Nums for counting purposes
and using Nums, he gave non-classical interpretations of cardinality and well-ordering.
In the context of his interpretations, he proved that there are sets with finite cardinality
which do not have a well-ordering and that there are well-orderings elements of which do
not form a set (hence solving the Box Problem above).
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Mislove, Moles and Oles worked on protosets, a generalization of HF, the set of well-
founded hereditarily finite sets [18]. Protosets are sets with some packaging which might
obscure some elements of the set. They proposed their Partial Set Theory based on pro-
tosets, with a relativization of Aczel’s work. Their theory is consistent with respect to
Aczel’s, because it is a conservative extension of the latter.

3. CONCLUSION
~——~—W&ewé&de—%&9ﬁ%ﬂﬁan~b@wmﬁrammmw—mm‘mm1@— ____________

may change: a universal commonsense set theory may be developed, or different set
theoretic concepts may be examined and modified. No matter what proposal is followed,
we believe that research in this field is promising, considering the current success of set
theory in mathematics.
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