TOWARDS PROGRAM UNDERSTANDING SYSTEMS

Tuncer I, Oren
Department of Computer Science, University of Ottawa
Ottawa, On. Canada KIN 6N5

ABSTRACT

Some philosophic and artificial intelligence concepts on understanding are reviewed and
fundamental definitions are given. Recent studies in-the field are hlghhghted Research i issues in
program understandmg are presented in a systematic way.

OZET

Program anlama konusunda ilgili felsefe ve yapay zeka kavramlan gozden gegirilip temel bazt
tarifler verilmig ve yakin ge¢miste yapilmig bazy ¢alignialardan bahsedjlmiétir. Program anlama
konusundaki aragtirma konular sistematik bir bigimde sunulmustur,

1. INTRODUCTION

Tools to understand computer programs can be very useful in software rhaintenance and
reengineering to satisfy practical goals such as: o

1. Automated visualization and documentation, including automated documentation of progfzims
in a natural language.

2. Answering questions about programs. This functionality requires ability to summarize and
filter relcvant knowledge (Queries and/or answers can also be in natural language including
speech).

3. Automated certification of certain characteristics (or Iack of them).

4. Computer-aided verification and validation of programs. ‘

5. Offering criticism about user.programs and justifying them as well as prdviding)
recommendations to enhance a citicised program. (Including tutoring student programs).

6. Program explanation,

7. Extracting or building reusable components,

A program understanding tool can be a static or dynamic tool. The first type analyzes a program
without executing it, while the second type monitors it during its execution.

Different types of knowledge can be discriminated by a program understanding system. These
include, for example, discrimination of application domain entities, design decisions, high level
abstractions, I/0 behavior, rules, plans, policies, and inbereitence relations. In special purpose
programs such as simulation programs, knowledge about the elements of static structure of a

simulation program such as input, state, output, auxiliary, and interpolated variables, constants,
ili ions; 2 ic strocture such

as the state transition and output functions; and the experimental conditions can be discriminated.

Backer et al, (1991, p. 274) reiterate the fundamental difference between the two points of view in
computer science. Point of view 1 states that computer science is a formal mathematical discipline,
while the second view states that it is an experimental discipline. The consequences of this
distinction is very important. View 1 requires that main tools for the development are formal
specification techniques, the basic challenge is to ask humans to think clearly and without logical
errors, and that the programming methodology would insist on formal vesification of specifications
before they are converted into programs. The second view, acknowledging the knowledge
processing abilities of humans, relies on the development of better tools (Newell and Simon, 1976,
Fisher and Bocker, 1983). Program understanding aims to provide such advanced tools and
environments.

The aim in this article is to review some philosophic and artificial intelligence concepts on
"understanding," provide some definitions in program understanding, and present some studies
that the author is involved in the development of some tools for program understanding.

2. PHILOSOPHICAL BACKGROUND

The concept of "understanding” is a fundamental issue in philosophy. See for example, Locke
(1984 - original publication: 1690), Leibniz (1985 - original publication: 1765), and Russell
(1948). Here, to provide a relevant background, only a few references are cited.

Whitehead distinguishes different 'iy'pes of understanding in chapter 3 of his treatise on Modes of
Thought (Whitehead (1968 - original publication: 1938). Paraphrasing him we have the following
three definitions. ' B

Internal understanding of a system involves the notion of composition and refers to the system's
elements and to their relationships. (Whitehead 1968, pp. 45-46)

' Extemal undersrandmg treats the system as a unity and refers to its rclannshlps w1th 1ts
environment. (Whitehead 1968, pp. 45-46).

Logical understanding starts w1th the details and passes to the construction achieved. (W hitehead
1968, pp. 61). ‘

Some addmonal notes about understandmg are af follows: Understanding is not pnmanly based on

an understanding. Proofs are the tools for the extension of 1mperfect self-evxdence (W huehead
1968, pp. 50). "Human understanding requires the adherence to some judlClOllS abstr: acuon and
the development of thought within that abstraction," (Whitehead 1968, pp. 55).

Understanding has two modes of advance: the gathering of detail wuhm assigned pattem and the
discovery of novel pattem with its emphasis on novel detail." (Whitehead 1968, pp. 58).

In chapter 9 of "How we Think,” Dewey (1991 - original. pubhcahon 1910) covers "Meaning: or
. Conceptions and Understandmg " He clarifies that to say that you do not understand something
and that it has no meaning are equivalent, (Dewey, 1991, p. 117). '

He distinguishes two types of understanding which are direct and indirect understandings.
Direct understanding is apprehension. Indirect understanding, called comprehension, is mediated
understanding. (Dewey, 1991, p. 120).

3. .ARTIFICIAL INTELLIGENCE BACKGROUND

Biermann (1990, pp.377-394) gives an example of how a system could "understand" that an object
is a chair, Such a system would have-a knowledge base about a chair where the knowledge is
expressed in terms of a semantic network. Based on the explanation of the system's chax actcmstms
he gives the followmg definition of understanding:

The understanding of a perception "...with respect to a body of knowledge involves finding a set
of self-consistent links between the parts of the knowledge structure and the parts of the perceived
data. After such a linkage is made, the intelligent being can follow arcs in its khdwlédge' base to
obtain innumerable useful facts, the name of the perceived objects, the names of its many parts,

(&1

_their relationships to each other, the uses of the object, and all other ihfd'rmation available in its
knowledge base." (Biermann, 1990, p. 386).

"Reasoning is the process of finding or building a linkage from one entity in memory to another.
There must be an initial entity, a target entity, and a way of choosing paths from the initial entity
toward the target." (Biermann, 1990, p. 402).

4, SOME PROGRAM UNDERSTANDING SYSTEMS

Early references in program understandmg are Basﬂl and Mills (1982), BlOOkS (1983) and

Letovski (1986) and Wiedenbeck (1986).

Bocker et al. (1986,,1991) stress program visuglization in program understanding S);stetﬁs. They
have developed tools for the visualization of data structures, control structures, object-oriented
formalisms, and directed graphs. One of their systems, KAESTLE is a graphic editor for list

~ strucures in LISP, It can be used to generate and edit the list structures of a LISP program ,
Another tool, FOOSCAPE, displays the static calling structure as well as dynamic behavior of a
programs. ZOO is a knowledge acquisition tool for Smalltalk environment. TRACK is an
extension of FOOSCAPE in object-oriented pr ogldmmmg TRISTAN is a tool fon the visualization
of directed graphs. o

Oren et al. concentrated on the application of program understanding to simulation proglamq and to
object-oriented programs written in C++, E/Slam (Elucidation of Slam programs) accepts as mput
a Slam II program and documents it by a series of statement and program oriented templates, The
latter provides summaries of the program according to certain criteria (Oren, 1989; Oren et al.
1990a,b,c, 1992). A recent development is to modularize the natural languagé documentation
process. An analyzer generates knowledge stored in a family of tables. A program generator based

. on the specification of the types of tables and the desired report generates a customized
'docume'n.tatio_n program which can generate natural langnage documentations (King et al. 1992).

_ Hamilton (1990) working with the author, iﬁ"l'pl‘,CIIi'Ghth a tool, NLC++ (Natural language |
documentation of C++ programs) which genchtes english documentation of C++ programs on a
PC.

Van Sickle (1992) announced a forthcoming ‘workshop on Al and automated prograrri
understanding. .

4. SOME CONCEPTS AND DEFINITIONS ON PROGRAM
UNDERSTANDING

Program understanding is a model-based and knowledge-intensive activity. It requires an a priori
model of the entity under scrutiny. The granularity of the model will limit the granularity of the
understanding,

A system A can understand a system B, if (1) A has a model C, of B, (2) A can analyze B to find
its elements and their relations, and (3) A can establish links between the elements as well as
relationships of B and C.,

Once the mapping between B and C is achieved, i.e., once A understands B, the knowledge of A
can be used by other knowledge processing modules to perform several knowledge processing
activities such as the ones enumerated in the introduction. For example, the 'following can be
achieved: '

1. Visualization and documentation of B can be done by providing knowledge about the elements
and relationships of B. For this purpose, the documentation module can use knowledge
collected as the result of the analysis of B, knowledge stored in the model C, as well as the
discrepancies between the knowledge stored in C and generated from B.

2. A critique of B can be provided based on the discrepancies between the knowledge stored in C
and generated from B,

3. Enhancement of B can be achieved by modifying B to remedy the perceived deficiencies.
S. RESEARCH ISSUES IN PROGRAM UNDERSTANDING SYSTEMS
Major research issues in program understanding are systematized in Figure 1. They are as follows:

1. Extend the scope of program understanding by identifying new goals for program
understanding.
2. For each type of programming (e.g., functional, declarative, object-oriented, structured, or
special purpose such as simulation), identify:
2.1 What must be understood (i.e., what are the elements and which of their relations
must be understood?) .
2.2 What should be the levels of abstractions and granularity of program understanding?

~1

for ¢ach type of programming (e.g., functional,

how goal affects declarative, object-oriented, structured, or
what must be learned? special purpose such as simulation, ...)
Scope of What must be z}ffs‘{falgt?of n
(goals for) . understood? }«
program (clements, & gg‘l%lgf:lgy of
understanding relationships) understanding

haoswvocoal

oW soar

affects which
relationships of what must be
understood and levels of abstractions

knowledge representation

‘would be used? relationships of what must be
' learned & knowledge needed
knowledge is needed relationships of knowledge-based
v § & other approaches ‘
]
‘ control
reprosontaton eeded structures
for - — for ~—gs-1 suitable for
program what must be kg:)f\fﬁ?&ge
understanding understood representations
knowledge acquisition for basis for
program understanding systems multiple views
other knowledge
program
program . generated by
related understanding the program
knowledge knowledge understanding
system

relationships of program understanding knowledge
& other program-related knowledge

knowledge bases

Figure 1. Major research issues in program understanding

3. What knowledge is needed for what must be understood? (i.e., what is the knowledge
understanding knowledge?) (Oren 1990). .

4. What are the knowledge representation schemes best suited (with respect to which cxircn'a)' of
the prbgram understanding knowledge?

Which control structures are suitable for different knowledge representations?
-What are the elements of knowledge base(s) for program understanding knowledge?

What are the elements of knowledge base(s) for other program-related knowledge?

What are the elements of knowledge base(s) to store knowledge generated by program
understanding systems? (For increasing the level of abstraction from program level, to user,
user group, programming type levels, for example).

R N AN Wn

9. Determine how goal affects what must be Tearned?

10. Determine the relationships of what must be learned and levels of abstractions.

11. Dete_rmine how goal affects which knowledge is needed for what must be done?

12. Determine how goal affects which knowledge representation would be used?

13. Determine the relationships of what must be understood and levels of abstraction. (Are there
any transformation rules between them?)

14. Determine the relationships of knowledge-based and other approaches for the control structures
suitable for different knowledge representations,

15. Determine the knowledge acquisition needs of program understanding systems.

16. Determine the relationship of program understanding knowledge and other program-related
knowledge.

17. Determine the knowledge base requirements of the knowledge generated by the program
understanding system. (Determine the types of knowledge and how they should be processed,
for example for associative knowledge processing and for learning as applied to program
understanding).

18. Extend the concepts of program understanding to large programs and multi programs,

6. CONCLUSION

Software systems are becoming larger and more and more complex. Their documentation,
maintenance, reengineering, and reverse engineering activities necessitate advanced tools, Program
understanding tools and environments are very promising new set of software engineering tools
and environments for these types of problems, In this article are discussed some basic concepts of
understanding and progiam imderstanding, some existing systems and a systematic discussion of
the needed research.

REFERENCES

Basili, V.R., Mills, H.D. (1982). Understanding and Documenting Programs. IEEE Transactions
on Software Eogineering, SE-8: 270-283.

Biermann, A.-W. (1990). Great Ideas in Computer Science. MIT Press, Cambridge, MA.

Bécker, H.-D., Fischer, G., Nieper-Lemke, H. (1986). The Enhancement of Understanding
Through Visual Representations. In: Human Factors in Computing Systems, CHI'86

Conference Proceedings. ACM, New Yoik, 44-50.

Bécker, H.-D., Fischer, G., Nieper-Lemke, H. (1991). The Role of Visual Representations in
Understanding Software. In: Artificial Intelligence and Software Engineering, D. Partridge
~(ed.). Ablex, Norwood, NJ, 273-290.

Brooks, R. (1983). Towards a Theory of the Comprehension of Computer Programs.
International Journal of Man-Machine Studies, 18: 543-554.

Dewey, J. (1991). How We Think. Prometheus Books, Buffalo, NY. (Originally published: D.C.
Heath, Lexington, MA, 1910).

Fisher, G. (1987). A Critic for LISP. In: Proc. of the 10th IJJCAI (International Joint Conference
on Artificial Interlligence), J. McDermott (ed.), Morgan Kaufman, Los Altos, CA., 177-
184.

Fisher, G., Bécker, H.-D. (1983). The Nature of Design Processes and Computer Systems Can
Support Them. In: Integrated Interactive Computing Systems, P, Degano and E. Sandewall
(eds.), Proc. of the European Conference on Integrated Interactive Computing Systems
(ECICS 82), North-Holland, Amsterdam, 73-88.

Hamilton, L. (1990). A Graphic Representation Scheme and a Tool for Natural Language
Documentation of C++ Programs. M.Sc. Thesis, Computer Science Department,
University of Ottawa, Ottawa, On., Canada.

Johnson, W.L., Soloway, E. (1983). PROUST: Knowledge-Based Program Understanding. In:
Proceedings of the 7th International Conference on Software Engineering. IEEE, Orlando,
FL.

10

King, D., Oren, T 1, Hitz, M. (1992 - In Press). Automatic Generation of Natural Language
Documentation for SLAM II Prograras. In: IMACS Transactions on Scientific Computing
'91, E.N. Houstis and J.R. Rice (eds.), North-Holland

Leibniz, G.W. (1985 - original publication: 1765). New Essays on Human Understanding.
University Press, Cambridge, England.

Letovsky, S. (1986). Cognitive Processes in Program Comprehension. In: Empirical Studies of
Programmers, E. Soloway and S. Iyengar (eds.),Ablex Norwood, NJ, 58-79.

Locke, J. (1984 - original publication 1690 date). An Essay Concerning Human Understanding,
Collins, Glasgow, UK.

Newell, A., Simon, H.A. (1976). Computer Science as an Empirical Inquiry: Symbols and
Search. CACM 19:3, 113-136.

Oren, T.I. (1989). Program Understanding Systems in Simulation. In: J.W. Rozenblit et al. (eds.)
Proc. of the 4th AT and Simulation Workshop, JCAI-11, Detroit, MI, August 21, 1989,
pp. 110-111.

Oren, T.1. (1990). A Paradigm for Artificial Intelligence in Software Engineering. In: Advances
in Artificial Intelligence in Software Engineering - Vol. 1, T.I Oren (Ed.), JAI Press,
Greenwich, Connecticut, pp. 1-55,

Oren, T.I., Abou-Rabia, O., King, D.G., Birta, L.G., Wendt, R.N. (1990a) (Plenary Paper).
Reverse Engineering in Simulation Program Understanding. In: Problem Solving by
Simulation, A. J4vor (Ed.) Proceedings of IMACS European Simulation Meeting,
Esztergom, Hungary, August 28-30, 1990, pp. 35-41,

Oren, T.1, Birta, L..G., Abou-Rabia, O., King, D.G., Wendt, R.N. (1990b). E/Slam: A
Software Understanding Environment for SLAM II Programs. In: Proceedings of
Euvropean Simulation Multiconference, Erlangen-Nuremberg, Germany, June 10-13, 1990,
SCS International, San Diego, CA, pp. 235-240.

Oren, T.I., Wendt, N.R., Abou-Rabia, O., King, D.G., Birta, L.G. (1990c). A Reverse
Engineering Application for Simulation Program Understanding. In: Proceedings of the

11

Bell Canada Quality Engineering Workshop 11, Moniréal, PQ, October 4-5, 1990,
(Participation by invitation).

Oren, T.1., Wendt, R.N., King, D.G., Abou-Rabia, O., Birta, L.G. (1992 - In Press). A
Template-Oriented Approach for Simulation Prograra Understanding. Mathematics and
Computers in Simulation,

Russell, B. (1948). Human Knowledge — Its Scope and Limits. George Allen and Unwin,
London, England.

T Varr Sickie; T(ed)y (1992 = Ti Preparation). Procecdings of the AAAL-O2 Workshop on Al &
Automated Program Understanding, San Jose, CA.

Whitehead, A.N. (1968). Modes of Thought, The Free Press, New York. (Original publication:
1938).

Wiedenbeck, S. (1986). Processes in Computer Program Comprehension. In: Empirical Studies of
Programmers, E. Soloway and S. Iyengar (eds.), Ablex Norwood, NJ, 48-57.

12

